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ABSTRACT
In traditional web services, the password recovery service is simply
done by asking users to reset with a new password. It may not be
convenient to users, as they need to keep track of all the passwords
that have been used. Sometimes, it is hard to generate an easy-to-
remember password that meets all the security requirements. There
is a recent research proposal that provides an alternative password
recovery service by using HoneyGen to generate a number of high-
quality honeywords, which are fake passwords similar to the real
password. These honeywords are obfuscated with asterisks to help
users remember their original password rather than asking users
to reset with a new password. In this work, we propose a group
intersection attack to crack the user passwords for web services that
apply this alternative password recovery service via HoneyGen. We
demonstrate the feasibility of the attack through a prototype imple-
mentation, and we observe that the attack success rate increases
when there exist multiple websites applying the HoneyGen tech-
nique for their password recovery service. From our experiment,
we conclude that there is a vulnerability with using HoneyGen for
the password recovery service, especially when there are multiple
websites are using it.
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1 INTRODUCTION
Passwords are one of the main forms of authentication for a variety
of web services (e.g., email services, online banking systems, online
shopping systems, etc.). Usually, users sign into their accounts using
a username and a password generated by themselves. Sometimes,
users may forget the password they used, which prevents them from
logging in to their account. To solve this problem, many websites
offer a password recovery service through a “Forgot password?"
link, which allows users to retrieve their password or simply change
their password if they don’t remember it. While this is likely to
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remain the most prevalent solution for forgotten passwords, there
is one interesting alternative that was suggested by Dionysiou et
al. [1]. They proposed a Honeywords Generation Technique called
HoneyGen, and they mentioned that HoneyGen could be used for
password recovery because it can generate words that are similar
to a user’s password. These generated words could be partially
obfuscated with asterisks and given to the user to help them recall
their original password.

A real-life scenario involving this type of password recovery
service would work as follows. A user clicks on the “Forgot pass-
word?" link and enters their email along with the last password they
remember. The password is given as input to HoneyGen, which
returns 𝑘 passwords that are most similar to the password that the
user just entered. Some characters from each of the 𝑘 passwords
are replaced with asterisks and then shown to the user.

Such a password recovery service is considered to be faster and
more convenient than simply changing the password that involves
email verification and new password creation. However, there is a
risk that the password could be leaked or stolen. If the user’s real
password is included among the fake passwords to increase the
chances of helping the user remember their password, then this
service is vulnerable to an intersection attack if there are multiple
websites using it. For example, given a particular username, an at-
tacker could obtain the obfuscated passwords from one website and
compare them with the results obtained from other websites. The
attacker could then guess, or even find out, the password depending
on the similarity or the overlapping of the obfuscated passwords
from different websites. In this study, we refer to this type of attack
as the intersection attack.

In this work, we demonstrate the group intersection attack to
the password recovery service that is powered by HoneyGen. We
show that such a password recovery service may not be secure,
especially when there are multiple web services using it for pass-
word recovery. In our experiment, the group intersection attack can
achieve a success rate of 28%-44% to accurately reveal the user’s
password when two websites apply such password recovery service.
When the number of websites increases (e.g., three websites apply
such password recovery service), the success rate of the attack can
increase to 58%-66%.

The rest of the paper is organized as follows. Section 2 reviews
related works involving password guessing. Section 3 illustrates
the design of HoneyGen and the implementation of our group-
intersection attack. Section 4 describes our experiment setup and
results. Section 5 discusses factors that can influence the success
rate of an attack. Section 6 concludes the paper.

2 RELATEDWORK
In recent years, there has been some research efforts on password
guessing attacks. One of the most relevant works is by Wang et
al. [4]. The authors developed two types of guessing attacks that
could distinguish a real password from its honeywords using just
one guess. Here, the honeyword generation techniques they have
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Figure 1: A password dataset is used to train HoneyGen to
learn password characteristics and structures. After training,
a password can be given as input to output a list of passwords
that are similar.

evaluated are based on the work by Juels and Rivest [3]. Their
attacks assign probabilities to passwords based on a known proba-
bility distribution (e.g., a leaked password dataset) and select the
password with the highest probability to be the assumed real pass-
word. They achieved a success rate of 29.29%-32.62% with their
basic trawling-guessing attack, 34.21%-49.02% with their advanced
trawling-guessing attack, and 56.81%-67.98% with their targeted-
guessing attack. The study by Wang et al. [4] disproved the idea
that using 𝑘 − 1 honeywords will leave attackers with a 1/𝑘 success
rate of guessing the real password as proposed by Juels and Rivest
[3].

PassGAN is a password-guessing tool that uses a Generative Ad-
versarial Network (GAN) to generate passwords [2]. It uses a deep
neural network trained on a password dataset to learn password
characteristics and produce an output of password guesses based
on those characteristics. By using a deep neural network, PassGAN
is able to learn enough information to compete with traditional
password guessing tools, such as John the Ripper and HashCat,
without requiring any prior knowledge of password structures and
password-selection behaviors.

HoneyGen [1]— specifically, HoneyGen’s chaffing-with-a-password-
model — uses word representation learning to produce honeywords
that look similar to a user’s real password. It is implemented using a
text classification library called FastText, which is used to generate
a word embeddings model. There are two steps. First, the model is
trained using a dataset of passwords so that the model can learn the
word representations. Then, the model is given a password as input
to generate a list of passwords in decreasing order of similarity.
Figure 1 shows the architecture and the workflow of HoneyGen.

3 GROUP INTERSECTION ATTACKS
3.1 Overview
HoneyGen can be used to provide a password recovery service. As
we discussed in the previous section, HoneyGen can offer a few
candidate passwords that are similar to the user’s attempts. The gen-
erated passwords could be similar to the user’s original password as
specified during the sign-up process, but with a few bits obfuscated
by asterisks. These obfuscated passwords can be considered as hints
to help the user remember their original password. If HoneyGen
is used in multiple websites for a password recovery service, then
there is a high risk of leaking user information when the attacker
performs a group intersection attack. For instance, the attacker can
contact multiple famous websites to obtain multiple obfuscated
passwords (hints) for the known username. With all the obtained

obfuscated passwords, the attacker can make a reasonable guess
about the real password for the username by cross comparing the
characters that are displayed and the characters that are obfuscated
by asterisks. We will give more details about the group intersection
attack in the following parts.

Our group intersection attack formalizes the process of find-
ing passwords with matching length and characters to increase
the chances of determining the real password. The main idea is
to consult the known username with multiple websites that apply
HoneyGen in their password recovery service. Then, the returning
hint passwords (i.e., the obfuscated passwords) can be grouped
together. After that, we can intersect the characters of the pass-
words and perform cross comparing to reveal the password. First,
passwords are grouped together based on matching length, which
are denoted by “correct group". Secondly, passwords that were not
put in any group, i.e., they were the only password that had their
length, are all put into one group, denoted as a “wrong group".
Additionally, any group created in the first step that has a smaller
size than the number of websites we consulted is also put into
the “wrong group". For example, if three websites were consulted,
and there is a group consisting of two passwords, then this group
would be put in the “wrong group". Third, for all groups that are not
the “wrong group", subgroups are formed that contain passwords
with matching characters. For example, a group may contain the
following passwords:

*u**ti*5
ku**k*y*
**u*t*55
*u***i55

The subgroups formed would be:
*u**ti*5
**u*t*55
*u***i55

and
ku**k*y*

For two passwords, we count thematching characters in this way:
if the character at the same index in both passwords contain either
the same character or an asterisk, then it is a matching character.
More formally, passwords 𝑝 and 𝑞 contain matching characters if

𝑝 [𝑖] == 𝑞 [𝑖] or 𝑝 [𝑖] == * or 𝑞 [𝑖] == *
for 0 ≤ 𝑖 < 𝑙𝑒𝑛𝑔𝑡ℎ(𝑝).

Fourth, subgroups with the same size as the number of websites
used (or greater than) are selected for intersection. All asterisks in
a password are replaced by the character in the corresponding posi-
tion in the other passwords. More formally, to intersect passwords
𝑝 and 𝑞 do the following:

𝑝 [𝑖] = 𝑞 [𝑖]
for 0 ≤ 𝑖 < 𝑙𝑒𝑛𝑔𝑡ℎ(𝑝).

𝑝 is the result of intersection and will be used for guessing the
real password.

The abovementioned algorithm can be used to accurately predict
the real password, given enough number of websites to consult
with. In addition, the algorithm is efficient in terms of the time
complexity. As we can see in the pseudocode, the time complexity
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of the group-intersection attack algorithm is 𝑂 (𝑛2), where 𝑛 is the
number of passwords that are retrieved from multiple websites.

4 EXPERIMENT
4.1 Datasets
In practice, websites using HoneyGen for password recovery would
train their models using their own database that consists of tons
of passwords. For our experiment, we simulated three separate
databases of passwords by using three different subsets of the
leaked RockYou password dataset (preprocessed and provided by
Dionysiou et al. [1]). More specifically, we used 50% of the dataset
(including 7,167,879 passwords) to train the model (what we call
half-model) for the first website, one-third of the list (including
4,778,587 passwords) to train the model (what we call third-model)
for the second website, and one-fourth of the list (3,583,940 pass-
words) to train the last model (what we call quarter-model) for the
third website. The half, third, and quarter lists were generated by
getting every other, third, and fourth line of the full RockYou list,
respectively. The half list contained even-numbered lines and the
quarter list contained odd-numbered lines so that the quarter list
was not a subset of the half list.

Function GroupIntersectionAttack(𝑃 ,𝑤):
𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙_𝑔𝑟𝑜𝑢𝑝𝑠 ← {}
𝑤𝑟𝑜𝑛𝑔_𝑔𝑟𝑜𝑢𝑝 ← [ ]
𝑔𝑢𝑒𝑠𝑠𝑖𝑛𝑔_𝑔𝑟𝑜𝑢𝑝𝑠 ← [ ]
forall 𝑝 ∈ 𝑃 do

if 𝑙𝑒𝑛𝑔𝑡ℎ(𝑝) ∈ 𝑘𝑒𝑦𝑠 (𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙_𝑔𝑟𝑜𝑢𝑝𝑠) then
𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙_𝑔𝑟𝑜𝑢𝑝𝑠 [𝑙𝑒𝑛𝑔𝑡ℎ(𝑝)] .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑝)

else
𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙_𝑔𝑟𝑜𝑢𝑝𝑠 [𝑙𝑒𝑛𝑔𝑡ℎ(𝑝)] ← [𝑝]

end
end
𝑡𝑜_𝑑𝑒𝑙𝑒𝑡𝑒 ← [ ]
forall (𝑘, 𝑣) ∈ 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙_𝑔𝑟𝑜𝑢𝑝𝑠 do

if 𝑙𝑒𝑛𝑔𝑡ℎ(𝑣) < 𝑤 then
𝑤𝑟𝑜𝑛𝑔_𝑔𝑟𝑜𝑢𝑝.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑣)
𝑡𝑜_𝑑𝑒𝑙𝑒𝑡𝑒.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑘)

end
end
forall 𝑑 ∈ 𝑡𝑜_𝑑𝑒𝑙𝑒𝑡𝑒 do

𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙_𝑔𝑟𝑜𝑢𝑝𝑠.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑑)
end
forall (𝑘, 𝑣) ∈ 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙_𝑔𝑟𝑜𝑢𝑝𝑠 do

𝑔𝑢𝑒𝑠𝑠𝑖𝑛𝑔_𝑔𝑟𝑜𝑢𝑝𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 ( [𝑣 [0]])
forall 𝑝 ∈ 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙_𝑔𝑟𝑜𝑢𝑝 [1 :] do

𝑚𝑎𝑡𝑐ℎ_𝑓 𝑜𝑢𝑛𝑑 ← 𝑓 𝑎𝑙𝑠𝑒

forall 𝑔 ∈ 𝑔𝑢𝑒𝑠𝑠𝑖𝑛𝑔_𝑔𝑟𝑜𝑢𝑝𝑠 do
if 𝐴𝑙𝑙𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠𝑀𝑎𝑡𝑐ℎ(𝑔, 𝑝) then

𝑚𝑎𝑡𝑐ℎ_𝑓 𝑜𝑢𝑛𝑑 ← 𝑡𝑟𝑢𝑒

𝑔.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑝)
end

end
if 𝑚𝑎𝑡𝑐ℎ_𝑓 𝑜𝑢𝑛𝑑 ≠ 𝑡𝑟𝑢𝑒 then

𝑔𝑢𝑒𝑠𝑠𝑖𝑛𝑔_𝑔𝑟𝑜𝑢𝑝𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 ( [𝑝])
end

end
end
𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑𝑠 ← [ ]
forall 𝑔 ∈ 𝑔𝑢𝑒𝑠𝑠𝑖𝑛𝑔_𝑔𝑟𝑜𝑢𝑝𝑠 do

if 𝑙𝑒𝑛𝑔𝑡ℎ(𝑔) ≥ 𝑤 then
𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑃𝑎𝑠𝑠𝑤𝑜𝑟𝑑𝑠 (𝑔))

end
end
return 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑𝑠

Algorithm 1: Group Intersection Attack Pseudocode
We used a subset of the leaked Zynga and Dropbox password

datasets to populate our database with 100,000 fake users so that
we can perform our attacks on these users. 50,000 users had pass-
words from the Zynga list and 50,000 users had passwords from the
Dropbox list. These passwords were randomly chosen and provided
by Dionysiou et al. [1].
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Function AllCharactersMatch(𝐺 , 𝑝):
forall 𝑔 ∈ 𝐺 do

if 𝑙𝑒𝑛𝑔𝑡ℎ(𝑔) ≠ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑝) then
return false

end
for 𝑖 ← 0 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝑝) − 1 do

if 𝑔[𝑖] ≠ “ ∗ ” and 𝑝 [𝑖] ≠ “ ∗ ” and 𝑔[𝑖] ≠ 𝑝 [𝑖]
then

return false
end

end
end
return true

Function IntersectPasswords(𝐺):
𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟_𝑙𝑖𝑠𝑡 ← [ ]
for 𝑖 ← 0 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝐺 [0]) − 1 do

𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟_𝑙𝑖𝑠𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝐺 [0] [𝑖])
end
forall 𝑔 ∈ 𝐺 [1 :] do

for 𝑖 ← 0 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝑔) − 1 do
if 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟_𝑙𝑖𝑠𝑡 [𝑖] = “ ∗ ” then

𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟_𝑙𝑖𝑠𝑡 [𝑖] ← 𝑔[𝑖]
end

end
end
𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑 ← “”
for 𝑖 ← 0 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟_𝑙𝑖𝑠𝑡) − 1 do

𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑 += 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟_𝑙𝑖𝑠𝑡 [𝑖]
end
return 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑
Algorithm 2: Auxiliary Functions Pseudocode

4.2 Setup
We used Flask to create three web applications that served a simple
login page where we can enter a username and password to login.
In addition to the username and password inputs, each page has a
“Forgot your password?" link, a “Let me guess a password!" link, an
input for the number of passwords to show (denoted in this paper
by 𝑘), and an input for the number of websites used (denoted in
this paper by𝑤 ). The “Let me guess a password!" link returns a ran-
dom username from our database of users. For that username, the
passwords are shown after the user enters the value of 𝑘 and clicks
on the “Forgot your password?" link. Entering 𝑘 = 1 returns just
the actual password without running HoneyGen, while entering
1 < 𝑘 ≤ 3 runs HoneyGen to generate 𝑘 − 1 similar passwords that
will be returned to help the user remember their actual password.
For each password returned, half of its characters are randomly
chosen and replaced with asterisks (*). The input for the number of
websites used was added to help us record our results, which were
updated every time we performed a login.

In the work by Dionysiou et al.’s [1], their proposal was for users
to enter the last password they remember as input to HoneyGen
and for the output of HoneyGen to be shown to the user. Our modi-
fications include (1) using the real password as input to HoneyGen
to streamline the process, and (2) combining the real password with
the output of HoneyGen to explore the implications of doing so.

The usernames and passwords, as well as the results of our
attacks, were stored in a MongoDB cluster. One collection was
used to store usernames and passwords and nine other collections
were used to store the number of successes and failures using the
following parameters: w1_k1, w1_k2, w1_k3, w2_k1, w2_k2, w2_k3,
w3_k1, w3_k2, w3_k3, where wi_kj means using 𝑖 websites that
each returned 𝑗 passwords.

Three GCP Cloud Functions were created to run HoneyGen. One
function used the half-model (trained by half of the RockYou list),
another function used the third-model (trained by one-third of the
RockYou list), and the last function used the quarter-model (trained
by one-fourth of the RockYou list). The functions take a password
and 𝑘 as inputs and outputs a string containing the password and
the 𝑘 − 1 generated passwords.

All three FastText models were trained using the following pa-
rameters: minCount = 1, minn = 2, epochs = 500, and model =
‘skipgram’. These were the same parameters used by Dionysiou et
al. [1] to train their FastText models.

4.3 Results
We performed 100 attacks for each of the 9 categories: w1_k1,
w1_k2, w1_k3, w2_k1, w2_k2, w2_k3, w3_k1, w3_k2, w3_k3, result-
ing in a total of 900 attacks. In terms of collecting results for𝑤 = 2
and𝑤 = 3, all different combinations of the half-model, third-model
and quarter-model were used for the purpose of comprehensive
evaluations. For each attack, we define a successful attack to be
performing a successful login, i.e., entering a correct password us-
ing only one attempt. A failed attack is defined to be performing
an unsuccessful login, i.e., entering the incorrect password in the
first attempt. Figure 2 provides the comprehensive results of our
experiment and Figure 3 shows the number of successful attacks
for different values of 𝑘 and𝑤 .

As we can see in those experimental results, there was not a
strong correlation between the number of successful attacks and
𝑘 . As 𝑘 increased, the number of successes increased for w2 but
decreased for w3. The potential effect of 𝑘 is discussed in the next
section, but those cases (both where 𝑘 could have a positive and
negative effect) occurred less than 1% of the time in our experiment.
So we attribute the monotonic increase for w2 and monotonic
decrease for w3 to random chance.

On the other hand, there was a strong correlation between the
number of successful attacks and𝑤 . When the number of websites
increases, the number of successful attacks increases. The reason
behind this is because there is a high chance of revealing more
characters in the actual password by performing intersection to
decode the asterisks that are marked from different websites. We
observe that there was an extremely low success rate (2%-3%) when
using only one website because one password with half of the
letters hidden had too many asterisks to be easily guessable. But as
more websites were used, the success rate increased significantly
compared to using only one website. In fact, the attack achieved a
success rate of 58%-66% when using three websites. This was the
case because using more websites increased the number of real
passwords provided, and having more real passwords reduced the
number of asterisks after intersection.
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If we combine the results of the above two observations, we
can conclude that if HoneyGen is only used in one website, even
if the number of passwords retrieved from this website increases,
the chance of cracking the password is not high. The efficient way
to steal the user’s password is to involve the results from more
websites that uses HoneyGen. The intuition is because different
websites have their own databases of passwords for training the
model. The more websites that are involved, the more distinctions
will be considered in training the model, and thus increasing the
chance of revealing the actual password.

5 DISCUSSION
5.1 The Effect of 𝑘 on Success Rate
There is some potential value in increasing 𝑘 to achieve a higher
success rate. Depending on the size and quality of the password
dataset used for training, HoneyGen can produce passwords that
are similar enough to the real password, so as to help make a correct
guessing of the password easily. For example, consider the following
group of passwords:

*usc*t*e**nd*
se****194*
sul***sa*i**
*x*lil***ng
*u**i**bass
*ur**n*b*ss

After performing the group-intersection attack, the result is
*ur*in*bass

which may be difficult to guess. However, by assuming that the
other passwords generated are similar to the real password, we can
utilize the other passwords to help us achieve a correct guess. In
this case, since two of the passwords start with the letter “s", we
can assume that the real password starts with an “s", resulting in

sur*in*bass
which then becomes easy to guess.

On the other hand, increasing 𝑘 may also have a limited value,
or sometimes introduce an adverse effect on success rate. Consider
the following group of passwords generated by w2_k3:

*a*ahj**n
*e***lan
sa**j**n
*ar*hj***n
*ara***n
sara****n

After performing the group-intersection attack, the result is a
subgroup with two passwords:

sarahj**n
saraj**n

In this case, there is more than one password that is potentially
correct. This is due to the fact that when the number of 𝑘 increases,
more fake passwords will be generated. As a result, more fake
passwords may have the same length as each other. In order to
perform the attack, the attacker would first have to choose the
correct password, and then guess the remaining asterisks for that

password. Incorrectly choosing the correct length of the password
would lower the success rate.

5.2 Exploiting Lack of Rate Limitations
In our experiment, we define a successful guess such that only
one attempt is allowed for guessing the password correctly. It is
expected that the success rate of performing a successful login will
increase if more guesses are allowed for each user, because the
remaining asterisks can be brute forced after group intersection.
For example, if the output is “Buffalo*2", then in the worst case,
it will take ten attempts to eventually get the correct password,
assuming that the remaining asterisk is a number.

The success rate is also expected to increase if multiple “For-
got password" requests for one user are sent to obtain different
combinations of obfuscations for the 𝑘 passwords. The reason is
because the asterisks are randomly generated in each attempt, and
the user can perform group intersections of these multiple attempts
to reduce the number of remaining asterisks.

5.3 Including the Real Password
In our experiment, we include the real password in the list of pass-
words returned, with it obfuscated. If we had excluded the real
password, then we expect our success rate to be as low as virtually
0%. Our group-intersection attack would not have been applicable
because the algorithm requires there to be at least one set of pass-
words that can be grouped and intersected, which may not exist
when the real password is excluded. Also, even though the fake
passwords may be similar to the real password, they do not show us
exactly what the real password looks like. This is important when
one wrong character leads to an unsuccessful login attempt.

Excluding the real password may be more secure, but it may also
be less efficient for the users to remember their real passwords. If the
fake passwords are not similar enough to the real password, then the
user would still not be able to remember their password, especially
if their real password is not included. For example, consider the
following group of passwords generated by our quarter model:

alejandrasofia366292
apancopilla150993

torrance83

These are the passwords generated by HoneyGen for the input
“yankee22".While the structure is similar (a group of letters followed
by a group of numbers), it is questionable whether the passwords
are similar enough to the real password, especially if they are also
partly obfuscated with asterisks.

In order to increase the similarity of the fake passwords, Hon-
eyGen would need to be trained on a sufficiently large dataset of
passwords, which may not be possible for services with a small user
base. Furthermore, the time it takes to generate the passwords in-
creases with the size of the model, which is based on the size of the
training dataset. Our smallest model, the quarter model, took about
40 seconds to generate passwords, while our largest model, the
half-model, took about 1.5 minutes to generate passwords, which
is probably longer than any user would be willing to wait to get
their password.
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Figure 2: Comprehensive Results of Group-Intersection Attack Using Only 1 Guess
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Figure 3: Results of Successful Attacks Using Only 1 Guess

5.4 Random Asterisk Placement
The proposed group-intersection attack algorithm is effective in
cracking the passwords if there are multiple websites applying Hon-
eyGen in their password recovery service. However, there are still
a few limitations of the proposed attacking technique, which can
be further improved. Firstly, under the assumption that the attacker
only has one attempt to guess a user’s password, there are a few
cases where this algorithm will still lead to an unsuccessful attack.

Due to the random placement of asterisks, the result of intersec-
tion may be hard to guess. For example, consider the following
subgroup:

B*f*alo**
B*f*al**2
Bu***lo*2

The intersection results in “Buffalo*2", which is difficult to know
with certainty what the remaining hidden character is.
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Secondly, due to the random placement of asterisks, the result
of intersection may not always be correct. For example, consider
the following passwords:

*a***123
*and*do***
ca*d**2*
dr*0**

**n**123
ca*de***

After performing all the grouping steps, the result is a subgroup
that looks like:

*a***123
ca*d**2*
**n**123
ca*de***

The intersection step gives us “cande123", but the real password
is “candy123" in our dataset. If the “y" had been revealed in any of
the first three passwords and the “e" had been hidden in the last
password, the correct password would have been produced.

6 CONCLUSION
We implemented a novel alternative idea for password recovery
proposed by Dionysiou et al. [1], using their proposed HoneyGen
algorithm. On top of that, we developed a novel group intersection

attack to show that this alternative password recovery service may
not be sufficiently secure if the real password was included in the
returned passwords, especially when there were multiple websites
applying HoneyGen. Through comprehensive experiment results,
we observe that the more websites that used HoneyGen, the more
successful our attack was. To the best of our knowledge, this is the
first implementation of password recovery service using HoneyGen,
and this is also the first implementation of performing password
attacking using group intersection. These can be considered as
useful guidelines for the industry when deploying the password
recovery service in their web service.
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